Journal Article: Hydrology of a Southern Appalachian Hypocrene Spring-Fed Fen

Environmental and Engineering Geoscience (2020) 26 (3): 359–366

Jeffrey Wilcox, Emily Bradshaw Marino, Adam Warwick, Megan Sutton


Garland Seep is a Southern Appalachian fen that supports a population of federally endangered green pitcher plants (Sarracenia oreophila). The wetland is underlain by clayey stream deposits above fractured bedrock, is located at the base of a mountain slope, and is fed by groundwater that originates as recharge on the adjacent hillslope. Groundwater wells were installed following a hydrologic restoration in the mid-1990s and have been monitored at varying frequencies since that time. The 20+ year record provides evidence that Garland Seep can be classified as a “hypocrene fen,” in which spring flow rarely reaches the ground surface because of low discharge rates and high evapotranspiration (ET). In general, water-level fluctuations followed seasonal ET patterns, with higher water levels in the winter and early spring (when ET is low) and lower levels in the summer and fall. During wetter years, the water table remained near the ground surface for much of the year, with the clay layer underlying the site retaining moisture even after water levels had dropped. The “clay wetting” period was shorter during dryer years and corresponded with a reduction in the number of pitcher plant clumps observed at the site. In addition to the geologic and climatic controls on hydrology, previous landowners used fire to maintain open space for grazing, and The Nature Conservancy has continued the practice to combat woody vegetation and to open the canopy. Prescribed burns reduce ET (at least initially), cause a rise in water levels, and have helped maintain a thriving Sarracenia population.